Bioavailability of iron to Trichodesmium colonies in the western subtropical Atlantic Ocean

نویسندگان

  • Katherine M. Achilles
  • Thomas M. Church
  • Steven W. Wilhelm
  • George W. Luther
  • David A. Hutchins
چکیده

Trichodesmium provides new nitrogen (N) to marine surface waters via N2 fixation, a process that requires a substantial amount of iron (Fe). Organic ligands in seawater that bind Fe could either increase or reduce the bioavailability of Fe. Electrochemical techniques indicate that these naturally occurring ligands have Fe-binding constants similar to those of siderophores and porphyrins, suggesting that these chelators play an important role in determining the bioavailability of Fe to cyanobacteria. We conducted Fe uptake experiments using model ligands labeled with 55Fe to compare the bioavailability of inorganic Fe(III), porphyrin-bound Fe(III), and siderophorebound Fe(III) to field-collected Trichodesmium colonies. Inorganic Fe(III) and siderophore-bound Fe(III) were more bioavailable to Trichodesmium colonies than was porphyrin-bound Fe(III). Furthermore, the bioavailability of the siderophore-bound Fe(III) can be characterized by the functional groups of the siderophore. The dihydroxamate siderophore and an uncharacterized ligand from a cultured Synechococcus sp. increased the bioavailability of Fe compared to the trihydroxamate siderophores. Except for experiments with desferrioxamine B, dark incubations resulted in lower Fe uptake rates for all treatments, relative to parallel lighted incubations. This suggests that light enhances the photochemical dissociation of most of the ligand complexes or that light energy is required for the active transport of Fe complexed to the model ligands. The Fe uptake rate of Trichodesmium colonies also differed slightly on the basis of colony morphology, with higher uptake rates with ‘‘puffs’’ than ‘‘tufts.’’ These experiments show that Trichodesmium colonies are capable of discriminating between Fe bound to different organic complexes. Cyanobacteria are ubiquitous in marine environments and play a significant role in the global carbon (C) and N cycles (Capone et al. 1997). The bioavailability of Fe is an important factor affecting the productivity of cyanobacteria, as Fe is necessary for essential metabolic processes such as photosynthesis and N2 fixation (Wilhelm 1995). Although cyanobacteria require relatively low amounts of Fe compared to C, N, and phosphorus (P), their biological Fe requirements are not always met because of the low inputs of Fe that are common to the open ocean and the low solubility of Fe in 1 Corresponding author ([email protected]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of diverse nitrogen fixers in the global ocean

[1] We employ a global three‐dimensional model to simulate diverse phytoplanktonic diazotrophs (nitrogen fixers) in the oceans. In the model, the structure of the marine phytoplankton community self‐assembles from a large number of potentially viable physiologies. Amongst them, analogs of Trichodesmium, unicellular diazotrophs and diatom‐diazotroph associations (DDA) are successful and abundant...

متن کامل

Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic

Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantificat...

متن کامل

Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton

Nitrogen fixing organisms such as Trichodesmium spp. are abundant in the oligotrophic tropical North Atlantic Ocean, where microplankton (including other diazotrophs) are more likely to be phosphorus (P) than nitrogen (N) limited. Thus, understanding the ability of different functional groups in the plankton to compete for P in this area is important for understanding their relative success. Th...

متن کامل

Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya

This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...

متن کامل

The microbial and metazoan community associated with colonies of Trichodesmium spp.: a quantitative survey

Organisms living in the open ocean must survive in a challenging environment often characterized by low nutrient levels. Subtropical open-ocean gyres, such as the Sargasso Sea, are examples of such extremely oligotrophic marine systems. Subtropical gyres are characterized by chronic (nitrogenous) nutrient depletion and low standing stocks of organisms (Pinet, 1992; Karl, 1999). Plankton can sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003